
Support matrices help manipulate Earley Chart : E ϵ [0,1] B x l x l x |D| ,
indexed by batch entry, end index, start index, then dotstate.

Predict: E[:,i,i,:] = I

Scan: E[:,j+1,:,:] ⨁= E[:,j,:,:] @ T[wj]

Complete: E[:,j,:,:] ⨁= ((E[:,j,i,:] @ C) ⨉ E[:,i,:,:]) @ T.sum(0)

Return: E[:,l,0,df]

Batched Vectorized Earley Parsing: Celine Lee, Alexander Rush, 10th Mid-Atlantic Student Colloquium on Speech, Language, and Learning. George Mason University, Arlington Campus, Virginia. 2023

Vectorized Earley Parsing

Batched Vectorized Earley Parsing
Celine Lee, Alexander Rush

Cornell University

Serial Earley Parsing

Vectorized Earley Parsing enables
parallelization

Batched Vectorized Earley fully parallelizes along the batch
dimension and partially parallelizes along the start index loop.

Parsing can be conducted in any semiring.

1. Vectorized: algorithm with matrices means the
efficiency of this system scales with improved
vectorized hardware (GPUs).

2. Parallelized: steps of the Earley algorithm are run
in parallel using matrix operations.

3. Batched: vectorized implementation enables
parallelization along the batch dimension.

4. Earley algorithm can parse any context-free
language, making it a useful tool for interpretable
language applications (comp. ling., neurosym., etc.)

Task: parse B input strings w1:B with length l, given
some parameterized grammar G=<N,T,(S,S’),R,θ>

Earley Parsing: as reading input string left-to-right,

process states [rule dotstate (A → α • β), start index

(i), end index (j)] by complete, predict, or scan.

States must obey the partial order relation ≤ :

If A ≤ B then B must be processed after A is

processed. States within the same partial order

can be processed in parallel.

A ≤ B iff either:
jA < jB

jA = jB and iA > iB

Perform Earley as a series of matrix operations along dotstate (D) and

start- and end- index dimensions. Support matrices encode properties

of the grammar relevant to Earley Parsing. All matrices are sparse.

Initialization Matrix : I ϵ [0,1] |D|. I[d] = θA → α iff d ~D A → • α

Transition Matrix : T ϵ {0,1} |N ∪ T| x |D| x |D|. T[s,da,db] = 1 iff da ~
D A → α • sβ

and db ~
D A → αs • β, where s ϵ N ∪ T

Completion Matrix : C ϵ {0,1} |D| x |D|. C[da,db] = 1 iff da ~
D A → α •

and db ~
D B → α • Aβ

E[:,j,i,:] : states with start index i and end index j

@ C : grouped and combined by source nonterminal,
indexed by items with that nonterminal next after the dot

* E[:,i,:,:] : multiply with states with end index i to get joint scores
of completed items, indexed by pre-dot-progressed result state

@ T.sum(0) : advance to result dotstate
⨁⇒ : and accumulate into existing values.

E[:,j,:,:] : states with end index j

@ T[wj] : for those with wj as the next token; copy scores into the
dot-progressed state in the next time step

⨁⇒ : and accumulate into existing values.

Predict all starting states with the same start and end index.

Processing operations ⨁, ⨂, @ can be
implemented according to any parsing
semiring* (inside, Viterbi, derivation forest,
etc.), and the algorithm remains the same.

O(l3|G.R|2)

Implemented using sparse matrices, Batched Vectorized Earley
parsing can be efficiently executed on vectorized hardware.

Earley Parsing Properties

Return the values associated with the final state [(S → S’ •), i=0, j=l].

* Semiring Parsing (Goodman, 1999)

This partial order must be maintained for
Earley parsing implementations to be correct.

Results

Viterbi Inside

Serial Vectorize Serial Vectorize

B = 2 0.0045 s 0.00414 s 0.0010 s 0.0030 s

B = 8 0.0182 s 0.0079 s 0.0040 s 0.0043 s

Simple grammar (13 rules); inputs length ~ 5

Impact

Earley parsing can be used for any
grammar-based processes. Vectorizing Earley
parsing enables Earley parsing over larger
grammars and inputs as the capabilities of
vectorized hardware machines scale.

